
© 2021 JETIR October 2021, Volume 8, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIRFD06031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 209

Creating Mobile Applications Using Django and

Flutter

Sadiya Shaikh

Computer Engineering

MH Saboo Siddik COE

Mumbai, India

sadiyashaikh1699@gmail.com

Mohammed Ahmed

Computer Engineering

MH Saboo Siddik COE

Mumbai, India

ermahmeds@gmail.com

 Abdul Aziz Barkat

Computer Engineering

MH Saboo Siddik COE

Mumbai, India

abdulaziz.barkat99@gmail.com

Ahmed Farooqui

Computer Engineering

MH Saboo Siddik COE

Mumbai, India

ahmed.farooqui071@gmail.com

Abstract—Making Mobile Applications is a rapidly growing

field with thousands of them being created daily and the

demand for them increasing continuously. Here we examine

the feasibility and / or ease of making Mobile Applications

while using Django and Flutter as the Technology Stack,

discuss the reasons for choosing such a stack, the various

design patterns used, and the various benefits and drawbacks

for doing the same.

Keywords—Mobile Application, Django, Flutter, Django Rest

Framework

I. INTRODUCTION

With the growing use of Mobiles, it is the advent of the
Mobile Era, the number of Mobile users greatly outnumber
the number of Desktop users and this difference only keeps
on increasing. Hence, businesses have realized that they need
to expand their reach by effectively using mobile channels
and what better way than to make a Mobile Application?
Hence it seen that there is a growing demand in the market
for making Mobile Applications and proportionally for
Mobile Developers. With this demand comes the need for
tools / technologies for making Mobile apps quickly, with
more ease and solving the problem of there being two
different and large Operating Systems (Android and IOS) to
support. This paper addresses these issues and discusses the
usage of Django and Flutter to make mobile applications,
with Django being used as the backend for the application
and Flutter as the frontend.

II. INTRODUCTION TO THE TECHNOLOGIES

A. Django

Django is a high-level Python Web framework that
encourages rapid development and clean, pragmatic design.
Built by experienced developers, it takes care of much of the
hassle of Web development, so you can focus on writing
your app without needing to reinvent the wheel. It’s free and
open source.

Django is one of the most popular framework when it
comes to making websites and is widely used by the
community, with its clean and extensible design and easy to
use features, one can find themselves making, designing and
deploying their website in record time.

B. Flutter

Flutter is Google's UI toolkit for building beautiful,
natively compiled applications for mobile, web, desktop, and
embedded devices from a single codebase.

With Flutter’s style of using Widgets to make the UI,
web developers that are familiar with using HTML and CSS
would adapt quite quickly to making apps with Flutter, this
combined with the fact that Flutter supports both Android
and IOS this would more than halve the development time
required to make the application as there is no need to have
multiple codebases to make the same thing.

III. DJANGO AS THE BACKEND

Django appears to follow an architecture very similar to
Model View Controller (MVC) but in general it is said that
it can be said to follow a different architecture which it calls
Model Template View (MTV). Next we will discuss this
architecture and how it is useful in developing a website and
makes development quick and easy. Further we would also
discuss how Django can be used to make APIs using Django
REST Framework (An open source library used with Django
to make RESTful APIs). We shall also discuss the
advantages and disadvantages of using Django as the
backend.

A. The Models

One of the part of the MTV architecture is the Model.
The model here is similar to model in the MVC architecture.
It is how your data is represented and how interaction with
the database takes place. Making a model in Django is a very
simple task, what you design in your models would be an
abstract representation of how your database table looks.
Given below is a simple (and small) example of how a model
can be made.

from django.db import models

class Product(models.Model):

 name =

models.CharField(max_length=50)

 price =

models.DecimalField(max_digits=10,

decimal_places=2)

There are many more fields that can be used similarly for
other datatypes and there are even fields for foreign keys and
other types of relations. Django will also automatically create
a primary key for your table if you don’t specify one.

http://www.jetir.org/
mailto:sadiyashaikh1699@gmail.com
mailto:ermahmeds@gmail.com
mailto:abdulaziz.barkat99@gmail.com
mailto:ahmed.farooqui071@gmail.com

© 2021 JETIR October 2021, Volume 8, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIRFD06031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 210

Making database queries on this model will be as simple
as using the Object Relational Mapper (ORM) that Django
provides:

Product.objects.filter(name='Watch A')

This query will give you all products whose name is
“Watch A”. There are many more methods to use with the
ORM with which we can abstract our SQL queries. Here we
have also dodged a big security concern which is SQL
Injection as Django will automatically convert these to
parameterized queries, instead of the insecure string
concatenation that beginners might be tempted to perform.

B. View

The view as opposed to that in MVC which is the

presentation layer in the MTV architecture the view does the

work similar to the controller in MVC, i.e. it controls all the

business logic and acts as a bridge between the model and

the template. One can make views in Django either using

functions or using classes. Django provides various generic

class based views that can be easily extended and used

according to one’s use case. Following is an example of a

simple view that will simply render a template:
from django.views.generic import

TemplateView

class AboutView(TemplateView):

 template_name = "about.html"

Views can get much more complicated than this,

providing context data to the template, using forms, creating

/ updating model instances, etc. Django provides generic

Class Based Views for all of these situations and a few

more.

C. Templates

Templates in the MTV architecture correspond to the
views in the MVC architecture and are related to the
presentation layer and handle the presentation logic. Django
templates use a syntax similar to jinja called Django
Template Language (DTL) with the core difference being
that DTL aims to separate business logic from the
presentation logic and hence disallows various operations
which otherwise would have been valid in jinja. This is a
great design decision and keeps development simple.

D. Providing an API with Django

To make a mobile application interact with Django we

clearly need an API. Although we can decide to do this

manually in our views and return JSON responses, this will

quicky get tedious and complicated. To solve this problem

there exists a very popular open source library called

Django REST Framework (DRF) which is a powerful and

flexible toolkit for building Web APIs. Various features

provided by DRF are as follows:

 Serialization / Deserialization of ORM and Non-
ORM data sources.

 Easily make views that allow the user to make
requests using the GET, PUT, PATCH, POST,
DELETE , and the various HTTP methods.

 Provide Authentication via the API easily using
various different methods.

 Provide Authorization / Permission management to
the various end points of the API, for example a user
should only be able to modify their own profile
details, etc.

 Parse the data passed in various ways by a user in a
request, be it JSON, XML, form data, etc. DRF will
parse so that you can easily use the data in python,
similarly it will also give the response to the client in
appropriate format the client wants.

E. Advantages of Using Django

 Fast Development: Django is designed to allow
developers to take their application from concept to
completion very quickly.

 Secure: Django is deliberately designed in such a
manner that doing insecure things is much harder
than the ways one can do it securely, hence unless
one goes out of their way, most applications made in
Django are reassuringly secure.

 Scalable: Django applications can be scaled very
easily flexibly.

 The ORM: The ORM enables developers to handle
data, make queries / interact with the database very
easily.

F. Disadvantages of Using Django

 Takes some time to learn the ropes: A beginner can
need some time to learn Django as there is a
predefined file structure involved and one page can
involve multiple files where code related to it resides
(urls, models, views, templates)

 Not meant for small projects: Django is a gigantic
framework and there is lots of code involved behind
the scenes. A small project would not need so many
features and using Django would require unnecessary
bandwidth for them.

IV. FLUTTER AS THE FRONTEND

Flutter is an open-source UI software development kit
created by Google. It is used to develop cross platform
applications for Android, iOS, Linux, Mac, Windows,
Google Fuchsia, and the web from a single codebase. Flutter
applications are not constrained to an architectural pattern
like Django per se, but a popular pattern used in Flutter
development is the Business Logic Component (BLoC)
pattern. We will briefly discuss the making UI in Flutter, the
BLoC pattern, making requests to the API, and the
advantages / disadvantages of using Flutter.

A. Making UI in Flutter

In Flutter a UI is made up by using Widgets and nesting
them as one would nest HTML tags, Flutter provides one
with various widgets using which one can either make their
own widgets or make their screens. Styling can be done by
using the various parameters that can be passed to a widget
and by using a global theme for the application. Following is
an example of making a simple “Hello World” screen:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Welcome to Flutter',
 home: Scaffold(
 appBar: AppBar(
 title: Text('Welcome to Flutter'),

http://www.jetir.org/

© 2021 JETIR October 2021, Volume 8, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIRFD06031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 211

),
 body: Center(
 child: Text('Hello World'),
),
),
);
 }
}

B. BLoC Pattern

BLoC stands for Business Logic Component. This
pattern aims to separate the business logic from the UI. This
is quite an important concern in Flutter as it can be seen that
the UI is made by writing dart code, and it can be quite easy
to fall into the habit of mixing UI code and business logic,
which would only make ones work more difficult than it
needs to be. To solve this issue the BLoC pattern divides the
code into 3 components, namely: The UI / presentation layer,
the bloc, and the data. The bloc will perform all business
logic, and act as a bridge between the UI and the data, to
communicate with the UI it will listen for events and emit
states (which might contain some data). The presentation
layer will not perform any business logic, it will only display
data to the user according to the state emitted by the bloc,
also in reaction to actions taken by the user it will emit
events for the bloc.

To use the BLoC pattern with Flutter one can use the
package flutter_bloc which makes using the BLoC pattern
very convenient.

C. Making requests to the API

To make requests to the API in Flutter one would use the
dart http package. With this package we can make HTTP
requests with various HTTP methods. Following is some
sample code to make a GET request:

import 'package:http/http.dart' as http;

var uri = new Uri(
 scheme: 'http',
 host: 'example.com',
 path: '/api/login/',
 queryParameters: {'username': 'username',
'password': 'password'},
);
var queryParameters = {'username':
'username', 'password': 'password'};
final response = await http.post(uri, body:
queryParameters);

D. Advantages of Using Flutter

 Faster Development: Flutter provides the facility of
Hot Reload, which allows a developer to make
changes in the code and see the change in the UI live.

 Cross Platform: Flutter is cross platform and hence
solves the problem of having multiple code bases for
the same application and reduces the time spent in
developing the same app for multiple operating
systems, this also reduces the amount of testing one
has to perform.

 Great Designs: Flutter provides a plethora of widgets
and also allows one to make their own widgets,
allowing you to make great designs.

E. Disadvantages of Using Flutter

 Libraries and support: Although there are great
packages built for Flutter, since Flutter is somewhat
new the number of packages is not very great and not
every functionality one might need can be found in
these packages.

 Changing Rapidly: Since flutter is quite new, it is
changing very rapidly and maintain it can be
somewhat of a task since features previously used
might be deprecated very quickly.

 Look and Feel: At the end of the day even though
Flutter can be used to make great designs, the look
and feel is not fully similar to the native solutions.

CONCLUSION

We introduced Django and Flutter, and discussed the
architecture used with these technologies, how to
integrate them using an API, their advantages and
disadvantages and various packages / libraries one would
use while creating a mobile application using them.

ACKNOWLEDGMENT

This paper and the research behind it would not have
been possible without the exceptional support of our
supervisor Mohammed Ahmed and the rest of the professors
of the Computer Department of M. H. Saboo Siddik College
of Engineering and their guidance. We would like to extend
our deepest gratitude to them for guiding us and inspire us
with their knowledge, enthusiasm and attention to detail.

REFERENCES

[1] Y. Huang, Y. Chai, Y. Liu and J. Shen, "Architecture of next-
generation e-commerce platform," in Tsinghua Science and
Technology, vol. 24, no. 1, pp. 18-29, Feb. 2019, doi:
10.26599/TST.2018.9010067.

[2] Wasim Rajput, E-Commerce Systems Architecture and Applications ,
Artech, 2000.

[3] B. Wang and J. Tang, "The Analysis of Application of Cloud
Computing in E-Commerce," 2016 International Conference on
Information System and Artificial Intelligence (ISAI), Hong Kong,
2016, pp. 148-151, doi: 10.1109/ISAI.2016.0040.

[4] Z. Hu, L. Xiao and Y. Lin, "Research and Application of E-commerce
Platform for Enterprise Based on NLB," 2007 2nd International
Conference on Pervasive Computing and Applications, Birmingham,
2007, pp. 360-364, doi: 10.1109/ICPCA.2007.4365469.

[5] T. Liu, "E-Commerce Application Model Based on Cloud
Computing," 2011 International Conference of Information
Technology, Computer Engineering and Management Sciences,
Nanjing, Jiangsu, 2011, pp. 147-150, doi: 10.1109/ICM.2011.144.

[6] Y. Liu, C. Liu and Z. Su, "The Diversity Layout of E-commerce
Applications Based on Android," 2018 IEEE International
Conference of Safety Produce Informatization (IICSPI), Chongqing,
China, 2018, pp. 715-718, doi: 10.1109/IICSPI.2018.8690375.

[7] Deng Heping, Li Zhengyue, Zhou Fei and Li Zhengfu, "E-commerce
applications: Issues and prospects," 2010 International Conference on
Networking and Digital Society, Wenzhou, 2010, pp. 88-91, doi:
10.1109/ICNDS.2010.5479383.

[8] J. Zhou and T. Zhou, "Mobile E-Commerce Characteristics and
Safety Analysis," 2008 4th International Conference on Wireless
Communications, Networking and Mobile Computing, Dalian, 2008,
pp. 1-3, doi: 10.1109/WiCom.2008.1260.

http://www.jetir.org/

